书籍 新东方  考研数学必备考点速查手册的封面

新东方 考研数学必备考点速查手册PDF电子书下载

本书编委会

购买点数

9

出版社

武汉:华中科技大学出版社

出版时间

2018

ISBN

标注页数

190 页

PDF页数

209 页

图书目录

高等数学部分 2

预备知识 2

三角函数 2

反三角函数 4

乘法公式与因式分解 4

数列 5

数学归纳法 5

基本不等式 6

奇偶性 6

运算性质 7

第一章 函数、极限、连续 8

极限定义 8

极限性质 9

无穷小和无穷大 10

极限运算法则 10

极限存在准则 11

重要极限 11

无穷小的比较 12

常见的等价无穷小 12

连续和间断点 13

闭区间上连续函数的性质 14

第二章 导数与微分 15

导数的定义 15

导数的几何意义 16

基本求导公式 16

导数的运算法则 17

可导与连续的关系 17

高阶导数 17

复合函数求导 18

反函数求导 18

变限积分函数求导 18

参数方程求导【数学一、二】 18

微分的定义及公式 19

曲率【数学一、二】 19

第三章 中值定理及导数应用 20

中值定理 20

麦克劳林公式 21

洛必达法则 22

极值和单调性的判断 23

曲线的凹凸性与拐点 25

渐近线 25

导数的经济应用【数学三】 26

第四章 不定积分 28

不定积分的概念与性质 28

常见积分公式 29

三类积分方法 30

第五章 定积分 33

定积分的定义及几何意义 33

定积分的性质 34

积分上限函数 35

定积分的计算方法 36

反常积分 37

定积分的应用 38

第六章 常微分方程 42

微分方程的基本概念 42

一阶方程及其解法 43

可降阶的二阶方程及其解法【数学一、二】 45

高阶线性方程解的结构 46

二阶及高阶常系数齐次线性方程及其解法 48

二阶常系数非齐次线性方程及其解法 49

第七章 向量代数与空间解析几何【数学一】 51

向量及其运算 51

两向量间的关系 52

空间平面及其方程 52

两平面之间的关系 53

点到平面的距离 53

空间直线及其方程 53

有关直线的问题 54

平面与直线的相互关系 55

点到直线的距离 56

空间曲面方程 56

空间曲线方程 56

常见的曲面方程 56

常见二次曲面 57

空间曲线在坐标平面上的投影 58

第八章 多元函数微分学 60

二元函数的极限和连续 60

偏导数 61

可微 62

可微与偏导的关系 62

多元函数求偏导数的方法 63

多元函数的极值 65

多元函数的几何应用【数学一】 67

第九章 二重积分 71

二重积分的概念和性质 71

二重积分的计算 72

二重积分的简化计算与计算技巧 74

无界区域上的反常积分【数学三】 77

第十章 三重积分 78

三重积分的概念与计算 78

重积分的应用 80

第十一章 曲线曲面积分【数学一】 83

曲线积分 83

曲面积分 88

三大公式的应用 92

第十二章 无穷级数 96

数项级数 96

幂级数的概念和性质 100

函数的幂级数展开式 104

傅里叶级数【数学一】 106

线性代数部分 110

第一章 行列式 110

n阶行列式定义 110

行列式的性质 110

余子式 111

代数余子式 111

行列式的按行(列)展开定理 111

范德蒙行列式 112

常用重要公式 112

第二章 矩阵 114

矩阵的种类 114

矩阵的运算 115

矩阵的逆 117

伴随矩阵 118

初等变换与初等矩阵 119

矩阵的等价 120

矩阵的秩 120

分块矩阵 121

第三章 向量 124

线性组合 124

线性表出 124

线性相关 124

线性无关 125

线性相关、无关的重要结论 125

矩阵等价 126

向量组等价 126

向量组的极大无关组 126

向量组的秩 127

矩阵的秩 127

向量空间【数学一】 127

基变换、过渡矩阵与坐标变换公式【数学一】 127

向量组的基【数学一】 128

向量的内积 128

施密特正交化 129

正交矩阵定义和性质 129

第四章 线性方程组 130

方程组的三种表示形式 130

克拉默法则 130

齐次线性方程组 131

基础解系 132

非齐次线性方程组 132

向量组的线性相关性与方程组的关系 133

第五章 特征值与特征向量 135

定义与性质 135

求解步骤 136

相似矩阵 136

矩阵的对角化 137

实对称矩阵 138

第六章 二次型 139

定义与定理 139

二次型化标准形 140

合同 141

惯性定理 142

正定二次型 142

概率统计部分【数学一、三】 146

第一章 随机事件和概率 146

随机事件及其运算 146

三大概型 147

概率的公理化定义 149

条件概率与事件的独立性 149

五大公式 150

第二章 一维随机变量及其分布 152

随机变量与分布函数 152

随机变量的类型 153

常见离散型分布 155

常见连续型分布 156

随机变量函数的分布 158

第三章 多维随机变量及其分布 160

二维随机变量及其分布函数 160

二维离散型随机变量 161

二维连续型随机变量 163

常见二维连续型随机变量的分布 165

二维随机变量函数的分布 166

第四章 随机变量的数字特征 168

数学期望 168

方差 169

常见分布的期望和方差 170

矩与协方差 171

第五章 大数定律与中心极限定理 174

基本概念 174

大数定律 174

中心极限定理 176

第六章 数理统计的基本概念 177

统计量及其数字特征 177

三大抽样分布 178

正态总体的抽样分布 179

第七章 参数估计 181

点估计 181

区间估计【数学一】 182

第八章 假设检验【数学一】 185

相关定义 185

两类错误 185

显著性检验 185

正态总体参数的假设检验 186

查看更多关于的内容

本类热门
在线购买PDF电子书
下载此书RAR压缩包