Chapter 1.Introduction to C*-Algebras 1
1.Definition and examples 1
2.Abelian C*-algebras and the Functional Calculus 7
3.The positive elements in a C*-algebra 12
4.Approximate identities 17
5.Ideals in a C*-algebra 21
6.Representations of a C*-algebra 24
7.Positive linear functionals and the GNS construction 29
Chapter 2.Normal Operators 37
8.Some topologies on B(H) 37
9.Spectral measures 41
10.The Spectral Theorem 47
11.Star-cyclic normal operators 51
12.The commutant 55
13.Von Neumann algebras 60
14.Abelian von Neumann algebras 62
15.The functional calculus for normal operators 65
Chapter 3.Compact Operators 71
16.C*-algebras of compact operators 71
17.Ideals of operators 82
18.Trace class and Hilbert-Schmidt operators 86
19.The dual spaces of the compact operators and the trace class 93
20.The weak-star topology 95
21.Inflation and the topologies 99
Chapter 4.Some Non-Normal Operators 105
22.Algebras and lattices 105
23.Isometries 111
24.Unilateral and bilateral shifts 118
25.Some results on Hardy spaces 126
26.The functional calculus for the unilateral shift 132
27.Weighted shifts 136
28.The Volterra operator 143
29.Bergman operators 147
30.Subnormal operators 157
31.Essentially normal operators 170
Chapter 5.More on C*-Algebras 181
32.Irreducible representations 181
33.Positive maps 187
34.Completely positive maps 190
35.An application: Spectral sets and the Sz.-Nagy Dilation Theorem 198
36.Quasicentral approximate identitites 204
Chapter 6.Compact Perturbations 207
37.Behavior of the spectrum under a compact perturbation 207
38.Bp perturbations of hermitian operators 211
39.The Weyl-von Neumann-Berg Theorem 214
40.Voiculescu’s Theorem 220
41.Approximately equivalent representations 229
42.Some approcations 236
Chapter 7.Introduction to Von Neumann Algebras 241
43.Elementary properties and examples 242
44.The Kaplansky Density Theorem 250
45.The Pedersen Up-Down Theorem 253
46.Normal homomorphisms and ideals 258
47.Equivalence of projections 265
48.Classification of projections 270
49.Properties of projections 278
50.The structure of Type I algebras 282
51.The classification of Type I algebras 289
52.Operator-valued measurable functions 294
53.Some structure theory for continuous algebras 301
54.Weak-star continuous linear functionals revisited 305
55.The center-valued trace 311
Chapter 8.Reflexivity 319
56.Fundamentals and examples 319
57.Reflexive operators on finite dimensional spaces 323
58.Hyperreflexive subspaces 327
59.Reflexivity and duality 335
60.Hypereflexive von Neumann algebras 342
61.Some examples of operators 348
Bibliography 355
Index 367
List of Symbols 371