1.Introduction 1
1.1.Approximate Statistical Procedures 1
1.2.Asymptotic Optimality Theory 2
1.3.Limitations 3
1.4.The Index n 4
2.Stochastic Convergence 5
2.1.Basic Theory 5
2.2.Stochastic o and O Symbols 12
2.3.Characteristic Functions 13
2.4.Almost-Sure Representations 17
2.5.Convergence of Moments 17
2.6.Convergence-Determining Classes 18
2.7.Law of the Iterated Logarithm 19
2.8.Lindeberg-Feller Theorem 20
2.9.Convergence in Total Variation 22
Problems 24
3.Delta Method 25
3.1.Basic Result 25
3.2.Variance-Stabilizing Transformations 30
3.3.Higher-Order Expansions 31
3.4.Uniform Delta Method 32
3.5.Moments 33
Problems 34
4.Moment Estimators 35
4.1.Method of Moments 35
4.2.Exponential Families 37
Problems 40
5.M-and Z-Estimators 41
5.1.Introduction 41
5.2.Consistency 44
5.3.Asymptotic Normality 51
5.4.Estimated Parameters 60
5.5.Maximum Likelihood Estimators 61
5.6.Classical Conditions 67
5.7.One-Step Estimators 71
5.8.Rates of Convergence 75
5.9.Argmax Theorem 79
Problems 83
6.Contiguity 85
6.1.Likelihood Ratios 85
6.2.Contiguity 87
Problems 91
7.Local Asymptotic Normality 92
7.1.Introduction 92
7.2.Expanding the Likelihood 93
7.3.Convergence to a Normal Experiment 97
7.4.Maximum Likelihood 100
7.5.Limit Distributions under Alternatives 103
7.6.Local Asymptotic Normality 103
Problems 106
8.Efficiency of Estimators 108
8.1.Asymptotic Concentration 108
8.2.Relative Efficiency 110
8.3.Lower Bound for Experiments 111
8.4.Estimating Normal Means 112
8.5.Convolution Theorem 115
8.6.Almost-Everywhere Convolution Theorem 115
8.7.Local Asymptotic Minimax Theorem 117
8.8.Shrinkage Estimators 119
8.9.Achieving the Bound 120
8.10.Large Deviations 122
Problems 123
9.Limits of Experiments 125
9.1.Introduction 125
9.2.Asymptotic Representation Theorem 126
9.3.Asymptotic Normality 127
9.4.Uniform Distribution 129
9.5.Pareto Distribution 130
9.6.Asymptotic Mixed Normality 131
9.7.Heuristics 136
Problems 137
10.Bayes Procedures 138
10.1.Introduction 138
10.2.Bernstein-von Mises Theorem 140
10.3.Point Estimators 146
10.4.Consistency 149
Problems 152
11.Projections 153
11.1.Projections 153
11.2.Conditional Expectation 155
11.3.Projection onto Sums 157
11.4.Hoeffding Decomposition 157
Problems 160
12.U-Statistics 161
12.1.One-Sample U-Statistics 161
12.2.Two-Sample U-statistics 165
12.3.Degenerate U-Statistics 167
Problems 171
13.Rank,Sign,and Permutation Statistics 173
13.1.Rank Statistics 173
13.2.Signed Rank Statistics 181
13.3.Rank Statistics for Independence 184
13.4.Rank Statistics under Alternatives 184
13.5.Permutation Tests 188
13.6.Rank Central Limit Theorem 190
Problems 190
14.Relative Efficiency of Tests 192
14.1.Asymptotic Power Functions 192
14.2.Consistency 199
14.3.Asymptotic Relative Efficiency 201
14.4.Other Relative Efficiencies 202
14.5.Rescaling Rates 211
Problems 213
15.Efficiency of Tests 215
15.1.Asymptotic Representation Theorem 215
15.2.Testing Normal Means 216
15.3.Local Asymptotic Normality 218
15.4.One-Sample Location 220
15.5.Two-Sample Problems 223
Problems 226
16.Likelihood Ratio Tests 227
16.1.Introduction 227
16.2.Taylor Expansion 229
16.3.Using Local Asymptotic Normality 231
16.4.Asymptotic Power Functions 236
16.5.Bartlett Correction 238
16.6.BahadurEfficiency 238
Problems 241
17.Chi-Square Tests 242
17.1.Quadratic Forms in Normal Vectors 242
17.2.Pearson Statistic 242
17.3.Estimated Parameters 244
17.4.Testing Independence 247
17.5.Goodness-of-Fit Tests 248
17.6.Asymptotic Efficiency 251
Problems 253
18.Stochastic Convergence in Metric Spaces 255
18.1.Metric and Normed Spaces 255
18.2.Basic Properties 258
18.3.Bounded Stochastic Processes 260
Problems 263
19.Empirical Processes 265
19.1.Empirical Distribution Functions 265
19.2.Empirical Distributions 269
19.3.Goodness-of-Fit Statistics 277
19.4.Random Functions 279
19.5.Changing Classes 282
19.6.Maximal Inequalities 284
Problems 289
20.Functional Delta Method 291
20.1.von Mises Calculus 291
20.2.Hadamard-Differentiable Functions 296
20.3.Some Examples 298
Problems 303
21.Quantiles and Order Statistics 304
21.1.Weak Consistency 304
21.2.Asymptotic Normality 305
21.3.Median Absolute Deviation 310
21.4.Extreme Values 312
Problems 315
22.L-Statistics 316
22.1.Introduction 316
22.2.Hajek Projection 318
22.3.Delta Method 320
22.4.L-Estimators for Location 323
Problems 324
23.Bootstrap 326
23.1.Introduction 326
23.2.Consistency 329
23.3.Higher-Order Correctness 334
Problems 339
24.Nonparametric Density Estimation 341
24.1 Introduction 341
24.2 Kernel Estimators 341
24.3 Rate Optimality 346
24.4 Estimating a Unimodal Density 349
Problems 356
25.Semiparametric Models 358
25.1 Introduction 358
25.2 Banach and Hilbert Spaces 360
25.3 Tangent Spaces and Information 362
25.4 Efficient Score Functions 368
25.5 Score and Information Operators 371
25.6 Testing 384
25.7 Efficiency and the Delta Method 386
25.8 Efficient Score Equations 391
25.9 General Estimating Equations 400
25.10 Maximum Likelihood Estimators 402
25.11 Approximately Least-Favorable Submodels 408
25.12 Likelihood Equations 419
Problems 431
References 433
Index 439