书籍 线性代数的封面

线性代数PDF电子书下载

(美)吉尔伯特·斯特朗(Gilbert Strang)著

购买点数

17

出版社

北京:清华大学出版社

出版时间

2019

ISBN

标注页数

573 页

PDF页数

585 页

图书目录

1 Introduction to Vectors 1

1.1 Vectors and Linear Combinations 2

1.2 Lengths and Dot Products 11

1.3 Matrices 22

2 Solving Linear Equations 31

2.1 Vectors and Linear Equations 31

2.2 The Idea of Elimination 46

2.3 Elimination Using Matrices 58

2.4 Rules for Matrix Operations 70

2.5 Inverse Matrices 83

2.6 Elimination = Factorization: A = LU 97

2.7 Transposes and Permutations 108

3 Vector Spaces and Subspaces 122

3.1 Spaces of Vectors 122

3.2 The Nullspace of A: Solving Ax = 0 and Rx = 0 134

3.3 The Complete Solution to Ax = b 149

3.4 Independence, Basis and Dimension 163

3.5 Dimensions of the Four Subspaces 180

4 Orthogonality 193

4.1 Orthogonality of the Four Subspaces 193

4.2 Projections 205

4.3 Least Squares Approximations 218

4.4 Orthonormal Bases and Gram-Schmidt 232

5 Determinants 246

5.1 The Properties of Determinants 246

5.2 Permutations and Cofactors 257

5.3 Cramer’s Rule, Inverses, and Volumes 272

6 Eigenvalues and Eigenvectors 287

6.1 Introduction to Eigenvalues 287

6.2 Diagonalizing a Matrix 303

6.3 Systems of Differential Equations 318

6.4 Symmetric Matrices 337

6.5 Positive Definite Matrices 349

7 The Singular Value Decomposition (SVD) 363

7.1 Image Processing by Linear Algebra 363

7.2 Bases and Matrices in the SVD 370

7.3 Principal Component Analysis (PCA by the SVD) 381

7.4 The Geometry of the SVD 391

8 Linear Transformations 400

8.1 The Idea of a Linear Transformation 400

8.2 The Matrix of a Linear Transformation 410

8.3 The Search for a Good Basis 420

9 Complex Vectors and Matrices 429

9.1 Complex Numbers 430

9.2 Hermitian and Unitary Matrices 437

9.3 The Fast Fourier Transform 444

10 Applications 451

10.1 Graphs and Networks 451

10.2 Matrices in Engineering 461

10.3 Markov Matrices, Population, and Economics 473

10.4 Linear Programming 482

10.5 Fourier Series: Linear Algebra for Functions 489

10.6 Computer Graphics 495

10.7 Linear Algebra for Cryptography 501

11 Numerical Linear Algebra 507

11.1 Gaussian Elimination in Practice 507

11.2 Norms and Condition Numbers 517

11.3 Iterative Methods and Preconditioners 523

12 Linear Algebra in Probability & Statistics 534

12.1 Mean, Variance, and Probability 534

12.2 Covariance Matrices and Joint Probabilities 545

12.3 Multivariate Gaussian and Weighted Least Squares 554

Matrix Factorizations 562

Index 564

Six Great Theorems/ Linear Algebra in a Nutshell 573

查看更多关于的内容

本类热门
在线购买PDF电子书
下载此书RAR压缩包