1.Topologie——Note Surles Produits Essentiels Symétriques des Espaces Topologiques 1
2.On the Product of Sphere Bundles and the Duality Theorem Modulo Two 4
3.Topologie——Sur L'existence D'un Champ D'éléments de Contact Ou D'une Structure Complexe Sur Une Sphère 19
4.Topologie——Stur Les Classes Caractéristiques D'un Espace Fibré En Sphères 22
5. Topologie—— Sur Le Second Obslacle D'un Champ D'éléments de Contact Dans Une Structure Fibrée Sphérique 25
6.Topologie——Sur La Structure Presque Complexe D'une Variété Différentiable Réelle de Dimension 4 28
7.Topologie——Sur La Structure Presque Complexe D'une Variété Différentiable Réelle 31
8.Topologie Algébrique——Classes Caractéristiques Et I-carrés D'une Variété 33
9.Topologie Algébrique——Les i-carrés Dans Une Variété Grassmannienne 36
10.Sur les Puissances de Steenrod 39
11.有限可剖分空间的新拓扑不变量 49
12.On Pontrjagin Classes Ⅰ 77
13.On Squares in Grassmannian Manifolds 91
14.“格拉斯曼”流形中的平方运算 114
15.一个H.Hopf推测的证明 136
16.论ПОНТРЯΓИН示性类Ⅱ 145
17.论ПОНТРЯΓИН示性类Ⅲ 170
18.论ПОНТРЯΓИН示性类Ⅳ 189
19.论ПОНТРЯΓИН示性类Ⅴ 215
20.On the Realization of Complexes in Euclidean Spaces Ⅰ 225
21.On the Imbedding of Polyhedrons in Euclidean Spaces 276
22.On the Realization of Complexes in Euclidean Spaces Ⅱ 281
23.On the Φ(p)-Classes of a Topological Space 307
24.On the Relations between Smith Operations and Steenrod Powers 312
25.On the Realization of Complexes in Euclidean Spaces Ⅲ 321
26.On the Reduced Products and the Reduced Cyclic Products of a Space 339
27.On the Dimension of a Normal Space with Countable Basis 350
28.On the Isotopy of Cr-Manifolds of Dimension n in Euclidean(2n+1)-Space 355
29.On the Realization of Complexes in Euclidean Spaces Ⅱ 360
30.On the Isotopy of Complexes in a Euclidean Space Ⅰ 386
31.Topologie Combinatoire Et Invariants Combinatoires 414
32.On Certain Invariants of Cell-Bundles 422
33.On the Isotopy of a Finite Complex in a Euclidean Space Ⅰ 428
34.On the Isotopy of a Finite Complex in a Euclidean Space Ⅱ 434
35.关于Leray的一个定理 438
36.某些实二次曲面的示性类 449
37.On the Imbedding of Orientable Manifolds in a Euclidean Space 464
38.欧氏空间中的旋转 473
39.A Theorem on Immersion 475
40.On the Immersion of C∞-3-Manifolds in a Euclidean Space 477
41.On the Notion of Imbedding Classes 480
42.On the Imbedding of Manifolds in a Euclidean Space(1) 483
43.On Complex Analytic Cycles and Their Real Traces 486
44.On Critical Sections of Convex Bodies 498
45.Sk型奇点所属的同调类 507
46.On Universal Invariant Forms 520
47.代数拓扑的一个新函子 536
48.代数拓扑I*函子论——齐性空间的实拓扑 539
49.代数拓扑I*函子论——纤维方的实拓扑 553
50.Theory of I*-Functor in Algebraic Topology——Effective Calculation and Axiomatization of I*-Functor on Complexes 574
51.Theory of I*-Functor in Algebraic Topology——I*-Functor of a Fiber Space 597
52.On Calculability of I*-Measure with Respect to Complex-Union and Other Related Constructions 618
53.de Rham-Sullivan Measure of Spaces and Its Calculability 623
54.A Constructive Theory of Algebraic Topology——Part Ⅰ.Notions of Measure and Calculability 643
55.De Rham Theorem from Constructive Point of View 663
56.Some Remarks on Jet-Transformations 685